Filter Search for grants
Call Navigation
Deadline expired
The deadline for this call has expired.
Call key data
HVAC, HVDC and High-Power cable systems
Call number
HORIZON-CL5-2024-D3-01-15
deadlines
Opening
12.09.2023
Deadline
16.01.2024 17:00
Funding rate
100%
Call budget
€ 16,000,000.00
Estimated EU contribution per project
between € 5,000,000.00 and € 5,500,000.00
Link to the call
Link to the submission
Call content
short description
Projects should focus on R&I, methodologies and tools regarding innovation in cable systems, predictive models for cable system ageing and monitoring and fault location systems. They should focus on the investigation and development of potential replacement of HVAC overhead lines with HVDC or High-Power cable solutions to increase capacity transfer without the need of building new infrastructures but reusing existing right of ways.
Call objectives
Projects are expected to implement at least three of the activities in (1) for one or more subtopics (A, B, C) or (2) for one or more subtopics (D, E, F) and the practical validation in (3) as described below:
1. R&I, methodologies and tools involving the activities listed below. These can be developed/complemented with others pertinent to the topic.
A. Innovation in cable systems
- Development of new insulating materials for dry type accessories for high temperature and above 525 kV
- Optimisation of newly developed high electrical resistivity insulating materials for use above 525 kV in cable and/or accessories.
- Development of new network components with reduced environmental impact such as EHV/HV cables without lead, application of superconductors, AC, DC cables/gas insulated lines for voltages above 525 kV.
- Development of larger conductor cross sections.
- Development of smaller conductor cross sections and leveraging higher current superconductors - greater power density benefits.
- Increase of maximum insulation operating temperature, such as for high load urban areas where available space for power transfer is limited.
- Further improvement of different types of extruded insulation materials (e.g., AC, DC-XLPE, Polypropylene) cables, and render recyclability of the materials feasible by refining the procedure of separation of the many components of the cable – insulation, wires, tapes, sheaths, etc. – from each other. Establishment of procedures for recycling and related possible products.
- Feasibility study for use of superconducting cables for submarine connections to determine their environmental benefits e.g., extremely low heat emittance, since they do not emit any heat, zero magnetic field benefits to marine fauna, smaller cable corridors for higher power densities, smaller landfall space requirements, etc.
- Simulation and design of innovative dynamic cable systems to meet the needs of the growing floating offshore applications.
B. Predictive models for cable system ageing (fraction-of-life lost, remaining life), life and reliability
- Modelling of space charge phenomena (as well as other relevant phenomena) in newly developed insulating materials, in full size cables and accessories.
- Modelling of its effects on cable system aging taking advantage of advanced experimental space charge measurement techniques.
- AI methods for managing a cable fleet angle.
- Impact of water absorption on ageing of lead-free wet-design HVDC or High-Power cables.
- Ageing of cable systems, including effect of contaminants, humidity and temperature, and its implications for space charge accumulation and lifetime estimations. Test methods to quantify ageing in a DC environment, such as voltage form for DC-specific breakdown testing.
C. Monitoring and fault location systems
- Continuous temperature and acoustic monitoring of long cable system lengths.
- Accurate and instantaneous fault location systems for long cable system lengths.
- Further development and improvement of on- and off-line diagnostics and condition monitoring techniques for HVDC or High-Power cable systems such as PD and leakage current measurements for online and space charge and dielectric permittivity and loss factor measurements for offline.
- Innovative technological solutions such as fibre-based and/or robotic technologies for data collection and maintenance in in all type of location (easy-to-access and inhospitable).
- Development of procedures for optimised maintenance and repair concepts of offshore stations using BIM and 3D-Models.
2. Investigation and development of potential replacement of HVAC overhead lines with HVDC or High-Power cable solutions to increase capacity transfer without the need of building new infrastructures but reusing existing right of ways.
D. Cost-Benefit Analysis for different options of HVAC OHL conversion
- Mapping of the potential use cases for replacement of HVAC with HVDC or High-Power solutions (buried or overhead) supported by a Cost-Benefit Analysis.
- Cost-Benefit Analysis for conversion of HVAC OHL to HVDC, High Power OHL or buried High-Power cable solutions.
- Resilience and reliability analysis of different HVAC OHL conversion options – underground cable, HVDC OHL and buried High-Power cable solutions.
E. Technical innovations and design methodologies of hybrid HV AC/DC overhead lines
- Insulation coordination and clearances calculation methodologies, for HVDC and hybrid HV AC/DC overhead lines.
- Electrical field and ion current density calculation methodology under hybrid HV AC/DC OHLs ion flow field.
- Operation, control and protection of hybrid AC/DC overhead lines.
- Management of long-distance mixed cable and OHL HV corridors.
F. Pan-European grid studies and unification of voltage level of the converted OHLs from HVAC to HVDC
- Proposal of a unified DC voltage level of the converted lines considering the standard towers and line designs of HVAC OHLs (220 kV, 400kV) in the European network to provide a general conversion approach, compatible with minimum operation downtime.
- Perform pan-European grid studies to propose a unified strategy toward an overlaying HVDC grid based on the converted HVAC OHLs and existing corridors with minimized environmental impact, link downtime and implementation time.
- Dynamic grid studies to demonstrate the impact of the HVAC OHL conversion to HVDC.
- Develop identification criteria for the candidate HVAC OHL corridors (to be converted in HVDC).
3. Test and validation of the activities developed in (1) consisting of at least one of the activities described in each subtopic A, B, C or (2) consisting of at least one of the activities described in each subtopic D, E, F in at least two validation tests in different EU Member States/Associated Countries.
read more
Expected results
Project results are expected to contribute to at least three of the following outcomes:
- High Voltage (HV), Extra High Voltage (EHV) or High Power/superconducting cable systems, including dynamic AC – DC cables.
- Development of not only better performing, but also more environmentally friendly materials for cable and accessory insulation.
- Improved tools for remote monitoring, repair and maintenance of equipment.
- Assessment of the feasibility of new cable system technologies.
- Increased reliability of HVDC or High-Power cable systems, through improved cable accessory design and/or ageing studies and/or use of cable condition monitoring techniques.
- Reduced cost of HVDC or High-Power cables, which increases feasibility of implementation in smaller projects, reducing the visual impact and improves social acceptability compared to AC overhead lines.
- Reducing the environmental impact of HVDC or High-Power cable systems through use of component designs with smaller climate footprints such as gas-free accessories or through conversion and reuse of existing infrastructure to increase power transfer capacity.
- When power demand increases and the ampacity of the power line is reached, the replacement of HVAC overhead lines with HVDC or with High-Power cable systems can avoid building new lines or reinforcing the grid.
- Increased power transfer over the same corridor and same or smaller right of ways.
- Methodology development of the OHL conversion from AC to DC with minimal line outage
- Contribution to the emergence of standards for DC OHLs in Europe
- Benefits of power dense technology options and avoidance of grid reinforcement.
read more
Eligibility Criteria
Regions / countries for funding
Moldova (Moldova), Albania (Shqipëria), Armenia (Հայաստան), Azerbaijan (Azərbaycan), Belarus (Беларусь), Bosnia and Herzegovina (Bosna i Hercegovina / Босна и Херцеговина), Faeroes (Føroyar / Færøerne), Georgia (საქართველო), Iceland (Ísland), Israel (ישראל / إِسْرَائِيل), Kosovo (Kosova/Kosovë / Косово), Montenegro (Црна Гора), Morocco (المغرب), New Zealand (Aotearoa), North Macedonia (Северна Македонија), Norway (Norge), Serbia (Srbija/Сpбија), Tunisia (تونس /Tūnis), Türkiye, Ukraine (Україна), United Kingdom
eligible entities
Education and training institution, International organization, Non-Profit Organisation (NPO) / Non-Governmental Organisation (NGO), Other, Private institution, incl. private company (private for profit), Public Body (national, regional and local; incl. EGTCs), Research Institution incl. University, Small and medium-sized enterprise (SME)
Mandatory partnership
Yes
Project Partnership
To be eligible for funding, applicants must be established in one of the following countries:
- the Member States of the European Union, including their outermost regions
- the Overseas Countries and Territories (OCTs) linked to the Member States
- third countries associated to Horizon Europe - see list of particpating countries
Only legal entities forming a consortium are eligible to participate in actions provided that the consortium includes, as beneficiaries, three legal entities independent from each other and each established in a different country as follows:
- at least one independent legal entity established in a Member State; and
- at least two other independent legal entities, each established in different Member States or Associated Countries.
Any legal entity, regardless of its place of establishment, including legal entities from non-associated third countries or international organisations (including international European research organisations) is eligible to participate (whether it is eligible for funding or not), provided that the conditions laid down in the Horizon Europe Regulation have been met, along with any other conditions laid down in the specific call topic.
A ‘legal entity’ means any natural or legal person created and recognised as such under national law, EU law or international law, which has legal personality and which may, acting in its own name, exercise rights and be subject to obligations, or an entity without legal personality.
Specific cases:
- Affiliated entities — Affiliated entities (i.e. entities with a legal or capital link to a beneficiary which participate in the action with similar rights and obligations to the beneficiaries, but which do not sign the grant agreement and therefore do not become beneficiaries themselves) are allowed, if they are eligible for participation and funding.
- Associated partners — Associated partners (i.e. entities which participate in the action without signing the grant agreement, and without the right to charge costs or claim contributions) are allowed, subject to any conditions regarding associated partners set out in the specific call conditions.
- Entities without legal personality — Entities which do not have legal personality under their national law may exceptionally participate, provided that their representatives have the capacity to undertake legal obligations on their behalf, and offer guarantees to protect the EU’s financial interests equivalent to those offered by legal persons.
- EU bodies — Legal entities created under EU law including decentralised agencies may be part of the consortium, unless provided for otherwise in their basic act.
- Joint Research Centre (‘JRC’)— Where provided for in the specific call conditions, applicants may include in their proposals the possible contribution of the JRC but the JRC will not participate in the preparation and submission of the proposal. Applicants will indicate the contribution that the JRC could bring to the project based on the scope of the topic text. After the evaluation process, the JRC and the consortium selected for funding may come to an agreement on the specific terms of the participation of the JRC. If an agreement is found, the JRC may accede to the grant agreement as beneficiary requesting zero funding or participate as an associated partner, and would accede to the consortium as a member.
- Associations and interest groupings — Entities composed of members (e.g. European research infrastructure consortia (ERICs)) may participate as ‘sole beneficiaries’ or ‘beneficiaries without legal personality’. However, if the action is in practice implemented by the individual members, those members should also participate (either as beneficiaries or as affiliated entities, otherwise their costs will NOT be eligible.
other eligibility criteria
Activities are expected to achieve TRL 4-5 by the end of the project.
If projects use satellite-based earth observation, positioning, navigation and/or related timing data and services, beneficiaries must make use of Copernicus and/or Galileo/EGNOS (other data and services may additionally be used).
Additional information
Topics
Relevance for EU Macro-Region
EUSAIR - EU Strategy for the Adriatic and Ionian Region, EUSALP - EU Strategy for the Alpine Space, EUSBSR - EU Strategy for the Baltic Sea Region, EUSDR - EU Strategy for the Danube Region
UN Sustainable Development Goals (UN-SDGs)
Additional Information
All proposals must be submitted electronically via the Funders & Tenders Portal electronic submission system (accessible via the topic page in the Search Funding & Tenders section). Paper submissions are NOT possible.
Proposals must be complete and contain all parts and mandatory annexes and supporting documents, e.g. plan for the exploitation and dissemination of the results including communication activities, etc.
The application form will have two parts:
- Part A (to be filled in directly online) contains administrative information about the applicant organisations (future coordinator and beneficiaries and affiliated entities), the summarised budget for the proposal and call-specific questions;
- Part B (to be downloaded from the Portal submission system, completed and then assembled and re-uploaded as a PDF in the system) contains the technical description of the project.
Annexes and supporting documents will be directly available in the submission system and must be uploaded as PDF files (or other formats allowed by the system).
Eligible costs will take the form of a lump sum.
The limit for a full application (Part B) is 50 pages.
Call documents
HE-Work Programme 2023-2024, Cluster 5, Destination 3HE-Work Programme 2023-2024, Cluster 5, Destination 3(1159kB)
Contact
To see more information about this call, you can register for free here
or log in with an existing account.
Log in
Register now