Close X


Call: Furthering the development of a materials acceleration platform for sustainable batteries (combining AI, big data, autonomous synthesis robotics, high throughput testing) (Batteries Partnership)

Logo
Programme
Acronym HE-CL5-D2
Type of Fund Direct Management
Description of programme
"Horizon Europe - Cluster 5 - Destination 2: Cross-sectoral solutions for the climate transition"

This Destination covers thematic areas which are cross-cutting by nature and can provide key solutions for climate, energy and mobility applications. In line with the scope of cluster 5 such areas are batteries, hydrogen, communities and cities, early-stage breakthrough technologies as well as citizen engagement. Although these areas are very distinct in terms of challenges, stakeholder communities and expected impacts, they have their cross-cutting nature as a unifying feature and are therefore grouped together under this Destination.

This Destination contributes to the following Strategic Plan’s Key Strategic Orientations (KSO):

  • C: Making Europe the first digitally enabled circular, climate-neutral and sustainable economy through the transformation of its mobility, energy, construction and production systems;
  • A: Promoting an open strategic autonomy[[‘Open strategic autonomy’ refers to the term ‘strategic autonomy while preserving an open economy’, as reflected in the conclusions of the European Council 1 – 2 October 2020.]] by leading the development of key digital, enabling and emerging technologies, sectors and value chains to accelerate and steer the digital and green transitions through human-centred technologies and innovations;
  • D: Creating a more resilient, inclusive and democratic European society, prepared and responsive to threats and disasters, addressing inequalities and providing high-quality health care, and empowering all citizens to act in the green and digital transitions.

It covers the following impact areas:

  • Industrial leadership in key and emerging technologies that work for people
  • Affordable and clean energy
  • Smart and sustainable transport

The expected impact, in line with the Strategic Plan, is to contribute to the “Clean and sustainable transition of the energy and transport sectors towards climate neutrality facilitated by innovative cross-cutting solutions”, notably through:

  1. Nurturing a world-class European research and innovation eco-system on batteries along the value chain based on sustainable pathways. It includes improvement of technological performance to increase application user attractiveness (in particular in terms of safety, cost, user convenience, fast charging and environmental footprint), in parallel supporting the creation of a competitive, circular, and sustainable European battery manufacturing value chain (more detailed information below).
  2. Increased efficiency of Europe’s cities’ and communities’ energy, resource use and mobility patterns and cities’ and communities’ overall sustainability, thereby improving their climate-resilience and attractiveness to businesses and citizens in a holistic fashion. This also includes improved air and water quality, resilience of energy supply, intelligent mobility services and logistics, liveability and accessibility of cities, public health, comfortable, affordable zero emissions housing as well as the exploitation of relevant European technologies and knowledge (more detailed information below).
  3. Facilitating the transformation to a climate neutral society, in line with the EU’s 2050 climate targets, through more effectively engaging and empowering citizens to participate in the transition, from planning to decision-making and implementation (more detailed information below).
  4. Nurturing the development of emerging technologies with high potential to enable zero-greenhouse gas and negative emissions in energy and transport (more detailed information below).

A competitive and sustainable European battery value chain

Batteries will enable the rollout of zero-emission mobility and renewable energy storage, contributing to the European Green Deal and supporting the UN SDGs by creating a vibrant, responsible and sustainable market. Besides climate neutrality, batteries also contribute to other UN SDGs directly and indirectly such as enabling of decentralized and off-grid energy solutions.

The strategic pathway is, on the one hand, for Europe to rapidly regain technological competitiveness in order to capture a significant market share of the new and fast growing rechargeable battery market, and, on the other hand, to invest in longer term research on future battery technologies to establish Europe's long term technological leadership and industrial competitiveness

The Partnership “Towards a competitive European industrial battery value chain for stationary applications and e-mobility”, to which all battery-related topics under this Destination will contribute, aims to establish world-leading sustainable and circular European battery value chain to drive transformation towards a carbon-neutral society.

The main impacts to be generated by topics targeting the battery value chain under this Destination are:

  1. Increased global competitiveness of the European battery ecosystem through generated knowledge and leading-edge technologies in battery materials, cell design, manufacturing and recycling;
  2. Accelerated growth of innovative, competitive and sustainable battery manufacturing industry in Europe;
  3. Accelerated roll out of electrified mobility through increased attractiveness for citizens and businesses, offering lower price, better performance and safety, reliable operation of e-vehicles. Increased grid flexibility, increased share of renewables integration and facilitated self-consumption and participation in energy markets by citizens and businesses;
  4. Increased overall sustainability and improved Life Cycle Assessment of each segment of the battery value chain. Developed and established innovative recycling network and technologies and in line with the March 2020 European Circular Economy Action Plan, accelerated roll-out of circular designs and holistic circular approach for funded innovations;
  5. Increased exploitation and reliability of batteries though demonstration of innovative use cases of battery integration in stationary energy storage and vehicles/vessels/aircrafts (in collaboration with other partnerships).

Communities and cities

This work programme contains only a few activities. The bulk of activities related to communities and cities will be introduced during 2021 as an update to the Horizon Europe work programme 2021, once the preparatory phase of the Horizon Europe Missions has been concluded.

Emerging breakthrough technologies and climate solutions

Although the contribution of a wide range of technologies to reach climate neutrality is already foreseeable, EU R&I programming should also leave room for emerging and break-through technologies with a high potential to achieve climate neutrality. These technologies can play a significant role in reaching the EU’s goal to become climate neutral by 2050.

Relevant topics supported under this Destination do not duplicate activities supported under Pillars I or III, but focus on emerging technologies that can enable the climate transition and follows at the same time a technology-neutral bottom up approach and the support of key technologies that are expected to support achieving climate neutrality. Research in this area is mostly technological in nature but should also where relevant be accompanied by assessments of environmental impact, social and economic impacts, and possible regulatory needs as well as activities to support the creation of value chains and to build up new ecosystems of stakeholders working on breakthrough technologies.

The main expected impacts to be generated by topics targeting breakthrough technologies and climate solutions under this Destination are:

  • Emergence of unanticipated technologies enabling emerging zero-greenhouse gas and negative emissions in energy and transport;
  • Development of high-risk/high return technologies to enable a transition to a net greenhouse gas neutral European economy;

Citizens and stakeholder engagement

The transition to climate-neutral economies and societies by 2050 is the defining challenge of this century. The challenge is not just technical: it calls for wide-ranging societal transformations and the adaptation of lifestyles and behaviours. Engaging citizens and stakeholders is therefore critical for the success of the European Green Deal, as is making greater recourse to the Social Sciences and Humanities (SSH), alongside the Scientific, Technical, Engineering and Mathematical (STEM) disciplines.

The topics under this section do not stand alone but aim to complement and support the broader integration (“mainstreaming”) of citizen and stakeholder engagement as well as the social sciences and humanities (SSH) across the whole Horizon Europe programme map and particularly Cluster 5.

The main expected impacts to be generated by topics targeting citizen and stakeholder engagement under this Destination are:

  • A better understanding of the societal implications of the climate transition, including its distributional repercussions;
  • More effective policy interventions, co-created with target constituencies and building on high-quality policy advice;
  • Greater societal support for transition policies and programs, based on greater and more consequential involvement of those most affected.
Link Link to Programme
Call
Furthering the development of a materials acceleration platform for sustainable batteries (combining AI, big data, autonomous synthesis robotics, high throughput testing) (Batteries Partnership)
Description of call
"Furthering the development of a materials acceleration platform for sustainable batteries (combining AI, big data, autonomous synthesis robotics, high throughput testing) (Batteries Partnership)"

Expected Outcome

Batteries have complex and dynamic processes taking place in and between materials and at the interfaces/interphases within a battery cell. For each new battery chemistry explored, new challenges in understanding these processes are revealed. To accelerate the finding of new material’s and their combinations for both existing and future battery chemistries the iterative and fragmented trial and error approach used today needs to be replaced since it is slow and insufficient.

To accelerate the discovery of battery interfaces, materials and new sustainable concepts with high energy and/or power performance there is a need to develop a fully autonomous and chemistry neutral Materials Acceleration Platform (MAP) for battery materials and interfaces. This is a key and long-term challenge for European battery community. The aim is to integrate advanced multi-scale computational modelling, materials synthesis, characterisation and testing to perform closed-loop autonomous materials findings and interphase engineering that would accelerate by at least a factor of five the discovery of new battery chemistries with ultra-high performances.

Building upon the shared data infrastructure, standards and protocols developed in the BATTERY 2030+ initiative, this call topic addresses the need of increasing the level of autonomy in the MAP-based discovery and development process. The proposal should also cover the contribution and collaboration to the BATTERY 2030+ large scale initiative.

Project results are expected to contribute to all of the following expected outcomes

  • Develop new tools and methods for significantly accelerating the development and optimisation of battery materials and interfaces, in order to increase the competitiveness of the battery material and cell industry in Europe.
  • Demonstrate a fully autonomous battery-MAP capable of integrating computational modelling, materials synthesis and characterisation of both Li-ion and beyond Li-ion chemistries.
  • Scale-bridging, multi-scale battery interface models capable of integrating data from embedded sensors in the discovery and prediction process, e.g. to orchestrate proactive self-healing.
  • Community wide state-of-the-art collaborative environment to access data and utilise automated workflows for integrated simulations and experiments on heterogeneous sites, e.g., exploiting European HPC architectures and Large-scale facilities in collaboration with LENS and LEAPS.
  • Demonstrate a robotic system that is capable of material synthesis for inorganic, organic or hybrid compounds following standard synthesis routes via automated characterisation of intermediate and final products and autonomous decision-making.
  • Deploy predictive hybrid physics- and data-driven models for the spatio-temporal evolution of battery interfaces and demonstrate inverse design of a battery material/interface.

Scope:

  • Infrastructure tools for secure remote data access, data analysis and predictive modelling: Develop a FAIR data infrastructure for raw and curated experimental and modelling data, which can be accessed remotely and securely by relevant stakeholders, including industry. Develop the software infrastructure required to operate this platform, also with regard to future reproducibility and further exploitation of the results of the research activities. The software should provide specific access right and allow remote data access, complemented by distributed workflows using software-agnostic workflow engines that provide rapid-prototyping. Inverse materials design using hybrid physics- and data-driven battery interface genome models should also be demonstrated.
  • Automated high throughput characterisation and integrated experimental and computational workflows: High throughput, multimodal operando experimental techniques using standardised battery cells and established protocols should be optimised to perform effective screening of new materials and on-line diagnosis of realistic devices. A central objective is to establish, structure, operate and dynamically refine such facility platform to harmonise, mutualise and optimise the global demand for battery characterisation. This includes automated experimental and computational workflows and modules for data acquisition and multimodal/multiscale analysis. Particular attention should be paid to battery interfaces and direct observation of interfaces under dynamic conditions, which are key to improve the performances and the lifetime of batteries.
  • Autonomous synthesis robotics and orchestration software: The transition from low/no automated robotics for the synthesis of battery materials requires several R&I steps towards fully autonomous systems. Within the scope of this proposed call are partially autonomous systems following standard synthesis routes for inorganic and organic battery materials, especially also multi-step and high-temperature synthesis, that so far are challenging to automate for high throughput. AI-based orchestration and optimisation software modules and packages specifically targeting battery materials and interfaces are also central to the scope.
  • Inverse design and AI-assisted scale-bridging models for multiple time- and length-scale processes: To develop scale-bridging models correctly describing the multiple mechanisms occurring at atomistic scale and the mesoscopic scale on the cell level. The new model approaches should be able to incorporate data from the advanced sensing in virtual design optimisation and battery control algorithms for SoX estimation. Sensitivity analysis and uncertainty quantification of the developed SoX models is also a requirement to assess the robustness of the developed models. These models should achieve a challenge based rational balance of accuracy and computational effort. They should accurately describe the actual state of the system, but also enable diagnosis and prediction, e.g., when self-healing procedures should be initiated. Multiscale Modelling approaches should be developed for the control of safety between BOL (Beginning Of Life) and EOL (End of Life) of a battery system by different uses and diagnosing the safety state of a battery system by innovative methods.

This topic implements the co-programmed European Partnership on ‘Towards a competitive European industrial battery value chain for stationary applications and e-mobility’.

Link Link to Call
Thematic Focus Research & Innovation, Technology Transfer & Exchange, Climate, Climate Change, Environment & Biodiversity, Clustering, Development Cooperation, Economic Cooperation, Circular Economy, Sustainability, Natural Resources, Energy Efficiency & Renewable Energy, Green Technologies & Green Deal, Mobility & Transport/Traffic
Funding area EU Member States
Overseas Countries and Territories (OCTs)
Origin of Applicant EU Member States
Overseas Countries and Territories (OCTs)
Eligible applicants Education and Training Centres, Federal State / Region / City / Municipality / Local Authority, Research Institution, Lobby Group / Professional Association / Trade Union, International Organization, Small and Medium Sized Enterprises, SMEs (between 10 and 249 employees), Microenterprises (fewer than 10 employees), NGO / NPO, Public Services, National Government, Other, Start Up Company, University, Enterprise (more than 250 employees or not defined), Association
Applicant details

eligible non-EU countries:

  • countries associated to Horizon Europe
Please see the List of Participating Countries in Horizon Europe for an up-to-date list of countries with which the association agreements have started to produce legal effects (either through provisional application or their entry into force).

  • low-and middle-income countries

Legal entities which are established in countries not listed above will be eligible for funding if provided for in the specific call conditions, or if their participation is considered essential for implementing the action by the granting authority.

Specific cases:

  • Affiliated entities - Affiliated entities are eligible for funding if they are established in one of the countries listed above.
  • EU bodies - Legal entities created under EU law may also be eligible to receive funding, unless their basic act states otherwise.
  • International organisations - International European research organisations are eligible to receive funding. Unless their participation is considered essential for implementing the action by the granting authority, other international organisations are not eligible to receive funding. International organisations with headquarters in a Member State or Associated Country are eligible to receive funding for ‘Training and mobility’actions and when provided for in the specific call conditions.
Project Partner Yes
Project Partner Details

Unless otherwise provided for in the specific call conditions , legal entities forming a consortium are eligible to participate in actions provided that the consortium includes:

  • at least one independent legal entity established in a Member State;and
  • at least two other independent legal entities, each established in different Member States or Associated Countries.
Further info

Proposal page limits and layout:

The application form will have two parts:

  • Part A to be filled in directly online  (administrative information, summarised budget, call-specific questions, etc.)
  • Part B to be downloaded from the Portal submission system, completed and re-uploaded as a PDF in the system

Page limit - Part B: 45 pages

Type of Funding Grants
Financial details
Expected EU contribution per projectThe Commission estimates that an EU contribution of around EUR 20.00 million would allow these outcomes to be addressed appropriately. Nonetheless, this does not preclude submission and selection of a proposal requesting different amounts.
Indicative budgetThe total indicative budget for the topic is EUR 20.00 million.
Typ of ActionResearch and Innovation Actions (RIA)
Funding rate100%

Activities are expected to achieve TRL 3-4 by the end of the project.

Submission Proposals must be submitted electronically via the Funding & Tenders Portal Electronic Submission System. Paper submissions are NOTpossible.

Register now and benefit from additional services - it is free of cost!

News

Published on 23.09.2022

Interreg Maritime - 5th Call

Interreg Maritime

Link to Call

Published on 14.09.2022

Perform EU

Creative Europe - Culture Strand

Link to Call
Loading Animation